

Performances and Feasibility of mmWave Beamforming Prototype for 5G Cellular Communications

IEEE ICC 2013

June 11, 2013

Wonil Roh, Ph. D.
Communications Research Team
DMC R&D Center
Samsung Electronics Corp.

CONTENTS

- 1. 5G Vision
- 2. 5G Key Enabling Technologies
- 3. mmWave Channel Propagation & Measurements
- 4. mmWave BF Prototype & Algorithm
- 5. Summary

Enabling the Immersive Service Experiences

Real-Time Interactive Game

5G Key Performance Targets

Providing Gigabit Experience to Users Anywhere

2. 5G Key Enabling Technologies

5G Key Enabling Technologies (1/2)

Disruptive Technologies for Significant Performance Enhancement

Adv. Coding & Modulation

Device-to-Devie (D2D)

5G Key Enabling Technologies (2/2)

Disruptive Technologies for Significant Performance Enhancement

Interference Management

Interference alignment

Spectrum Candidates

Candidates for Large Chunks of Contiguous Spectrum

- 13.4~14 GHz, 18.1~18.6 GHz, 27~29.5 GHz, 38~39.5 GHz, etc.

EESS (Earth Exploration-Satellite Serivce)
MS (Mobile Service) FS (Fixed Servce)

FSS (Fixed Satellite Service) P-P (Point to Point) RL (RadioLocation service), LMDS (Local Multipoint Distribution Services)

Friis' Equation in Free Space (1/3)

Aperture Size for Isotropic Rx Ant

@ 2.8 GHz

Isotropic Tx & Rx

"Path-loss" is Proportional to Frequency Squared

 $= P_{TX} \cdot 1 \cdot 1 \cdot \left(\frac{c^2}{4\pi (\cdot f^2)}\right) \left(\frac{1}{4\pi R^2}\right) (c: \text{speed of light})$

Comparison Example

	2.8 GHz	28 GHz
RX Aperture Size	9.135 cm ²	0.091 cm ²
Path-loss (R=1m)	-41.4 dB	-61.4 dB

Path-loss			[Distan	ce (m)
(dB) 0	100	200	300	400	500
-60			f=	800 N	ЛНz
-90			f=	2.8 G	Hz
-120			f=	28 GI	lz

Isotropic Aperture Size for Isotropic Rx Ant @ 28 GHz

Friis' Equation in Free Space (2/3)

Isotropic Tx but Rx Array Antennas

☐ Same Size of Rx Aperture Captures Same Rx Power Regardless Frequency

$$P_{RX} = P_{TX}G_{TX}G_{RX}\left(\frac{\lambda}{4\pi R}\right)^{2}$$
=1 for Isotropic

$$= P_{TX} \cdot 1 \cdot G_{RX} \left(\frac{\lambda^2}{4\pi} \right) \left(\frac{1}{4\pi R^2} \right)$$

$$= P_{TX} \cdot 1 \cdot A_{e,RX} \left(\frac{4\pi}{\lambda^2} \right) \left(\frac{\lambda^2}{4\pi} \right) \left(\frac{1}{4\pi R^2} \right)$$

$$= P_{TX} \cdot 1 \cdot A_{e,RX} \left(\frac{1}{4\pi R^2} \right)$$

☐ Comparison Example

	2.8 GHz	28 GHz
RX Aperture Size	9.135 cm ²	9.135 cm ²
RX Power	P _{RX}	P _{RX}

Friis' Equation in Free Space (3/3)

Array Antennas for Both Tx & Rx

Rx Power is Even Bigger in Higher Frequency with Array Antennas for Both Tx & Rx

$$P_{RX} = P_{TX}G_{TX}G_{RX}\left(\frac{\lambda}{4\pi R}\right)^2$$

$$\begin{pmatrix} G = A_e \frac{4\pi}{\lambda^2} \end{pmatrix} = P_{TX} G_{TX} G_{RX} \left(\frac{\lambda^2}{4\pi} \right) \left(\frac{1}{4\pi R^2} \right)$$

$$= P_{TX} A_{e,TX} A_{e,RX} \left(\frac{4\pi}{\lambda^2} \right) \left(\frac{4\pi}{\lambda^2} \right) \left(\frac{\lambda^2}{4\pi} \right) \left(\frac{1}{4\pi R^2} \right)$$

$$= P_{TX} A_{e,TX} A_{e,RX} \left(\frac{4\pi}{\lambda^2} \right) \left(\frac{1}{4\pi R^2} \right)$$

$$= P_{TX} A_{e,TX} A_{e,RX} \left(\frac{4\pi (f^2)}{c^2} \right) \left(\frac{1}{4\pi R^2} \right)$$

Comparison Example

	2.8 GHz	28 GHz
RX Power	P _{RX} + 20	dB P _{RX} + 20 dB

Atmospheric Absorption Loss

Atmospheric Loss due to H2O & O2 at 28 GHz is Negligible

[Ref.] M. Marcus and B. Pattan. Millimeter wave propagation: spectrum management implications. IEEE Microwave Magazine, June 2005.

Rain Attenuation

Rain Attenuation at 28GHz is Approx. 4 dB at 200 m even in 110 mm/hr Intensity

[Ref.] http://www.nws.noaa.gov/ohd/hdsc/On-line reports/

[Ref.] M. Marcus and B. Pattan. Millimeter wave propagation: spectrum management implications. *IEEE Microwave Magazine*, June 2005.

Foliage Loss

 Loss in Dense Foliage Is Non-Negligible, But Other Paths Are Expected in Urban Environments

Foliage Loss

- ☐ 28 GHz shows additional 3.3 dB loss for 2 m foliage and 8.6 dB for 10 m foliage compared to 2.8GHz
 - In urban environments, other reflection paths are highly expected from surroundings

Empirical relationship for loss:

$$L_{foliage} = 0.2 f^{0.3} D^{0.6} \text{ dB}$$

where

f: frequency in MHz,

D: depth of foliage transverse in meters (D < 400 m)

[Ref.] M. Marcus and B. Pattan. Millimeter wave propagation: spectrum management implications. IEEE Microwave Magazine, June 2005.

Chassis / Hand / Power Absorption

- Effect of Chassis/Hand/Head Could Be Compensated with Beamsteering Array
- High Frequency Beamforming Reduces Power Penetration/Absorption through Skin

Power Absorption Low penetration and absorption due to high frequency beamforming 1.9 GHz Omni-Antenna w/o head w/ head Penetration depth = $40\sim45$ mm, Average = 0.29, MAX = 1 mW/g 28 GHz Beamforming 1) Penetration depth = 3 mm, Average = 0.15, MAX = 90 mW/g 2) Penetration depth = 3 mm, Average = 0.016, MAX = 2.11 mW/g

Indoor Propagation

Beamforming Significantly Improves Indoor Coverage at 28 GHz

Channel Measurement – Sub-Urban

- Similar Path-loss Exponent & Smaller Delay Spread Measured (w.r.t current cellular bands)
 - Measurements were made by using horn-type antennas at 28 GHz and 38 GHz in 2011

Samsung Campus, Korea

		LOS	NLOS
Path Loss Expor	nent	2.22	3.69
RMS	Median	4.0	34.2
Delay Spread [ns]	99%	11.4	168.7

UT Austin Campus, US

		LOS	NLOS
Path Loss Expor	nent	2.21	3.18
RMS	Median	1.9	15.5
Delay Spread [ns]	99%	13.7	166

^{*} Reference: Prof. Ted Rappaport, UT Austin, 2011

Channel Measurement – Dense Urban

Slightly Higher But Comparable Path Loss Measured in New York City in 2012

New York, Manhattan, US

^{*} Reference: Prof. Ted Rappaport, NYU, 2012

4. mmWave BF Prototype & Algorithm

mmWave BF Prototype Overview

World's First mmWave Mobile Technology

- Adaptive array transceiver technology operating in the millimeter-wave frequency bands for outdoor cellular

Carrier Frequency	27.925 GHz
Bandwidth	500 MHz
Max. Tx Power	37 dBm
Beam width (Half Power)	10°

mmWave BF Prototype

Test Results of mmWave BF Prototype

Performance Tests of mmWave OFDM Prototype

- OFDM system parameters designed for mmWave bands
- Indoor & outdoor measurements performed for data rates and transmission ranges

System Parameters & Test Results

PARAMETER	VALUE	
Carrier Frequency	27.925 GHz	
Bandwidth	500 MHz	
Duplexing	TDD	
Array Antenna Size	8x8 (64 elements) 8x4 (32 elements)	
Beam-width (Half Power)	10°	
Channel Coding	LDPC	
Modulation	QPSK / 16QAM	

PARAMETER	VALUE	REMARKS
Supported Data Rates	1,056Mbps 528Mbps 264Mbps	
Max Tx Range	Up to 2Km @ LoS	>10 dB Tx power headroom
Full-HD Video Streaming Test Mea		rements with DM

Test Results – Range

Outdoor Line-of-Sight (LoS) Range Test

- Error free communications possible at 1.7 Km LoS with > 10dB Tx power headroom
- Pencil BF both at transmitter and receiver supporting long range communications

LoS Range

☐ Support wide-range LoS coverage

√ 16-QAM (528Mbps) : BLER 10⁻⁶

✓ QPSK (264Mbps): Error Free

BLER: Block Error Rate

QPSK: Quadrature Phase Shift Keying

QAM: Quadrature Amplitude Modulation

Test Results – Mobility

- Outdoor Non-Line-of-Sight (NLoS) Mobility Tests
 - Fast Joint Beamforming & Tracking Supports 8 km/h Mobility even in NLOS

Mobility Support in NLoS

☐ Mobility support up to 8 Km/h at outdoor NLoS environments

√ 16-QAM (528Mbps) : BLER 0~0.5%

✓ QPSK (264Mbps) : Error Free

[DM Screen during Mobility Test]

Test Results – Building Penetration

- Most Signals Successfully Received at Indoor MS from Outdoor BS
 - Outdoor-to-indoor penetration made through tinted glasses and doors

Hybrid BF Architecture

- Hybrid use of Analog Beamforming and Digital Precoding
 - Analog Beamforming: To overcome higher path-loss with beamforming gain
 - Digital Precoding : To optimize capacity using various MIMO techniques
- High performance with Low complexity for mmWave Systems

Hybrid Beamforming Architecture

- Massive Array Antennas
- Array Weighting with Phase Shifters
- Multiple RF Chains Linking Array Antennas
- → Large Array Beamforming Gain
- → Adaptive Analog Beam Steering
- → Adaptive MIMO/BF Precoding

Hybrid BF Link-level Analysis

- Hybrid Beamforming Offers A Good Compromise between All Digital and All Analog
 - Performance improvement through digital MIMO precoding on selected multiple analog beams, approaching full digital performance

- Analog BF: Focusing BF gain to the single dominant channel path
- Digital BF: Matching dispersive channel paths with full flexibility up to the number of antennas
- **Hybrid BF**: Focusing BF gains to a few dominant channel paths by combining multiple analog beams with limited RF chains

Fig.1: Instantaneous beam patterns for a given dispersive channel

- Hybrid BF Tx: 8 elements/antenna, 2 RF chains
 Rx: 4 elements/antenna, 1 RF chain
- Digital BF Tx: 16 elements (1 RF chain/element) Rx: 4 elements (1 RF chain/element)

Fig.2: Link performance comparison

Summary

Samsung's 5G Goal Is to Maximize Operator & User Benefits by

- Order of magnitude improvements in system capacity leading to significant cost/bit reduction
- Uniform high data rate (Gbps) experience anywhere
- Support of cost-efficient wireless backhaul for network scalability

mmWave BF Technology as a Viable Solution to Provide Gbps Experience

- Promising mmWave channel measurement data obtained and modeling to follow
- Encouraging results of outdoor coverage and indoor penetration tests shown
- Real-time adaptive beamforming and tracking implemented to show mobility support
- Advanced hybrid BF algorithms to further enhance performances
- More measurement tests, improvements on power/spectral efficiency to ensue